
Advanced Python Programming

David M. Beazley

Department of Computer Science
University of Chicago

beazley@cs.uchicago.edu

O’Reilly Open Source Conference

July 17, 2000

O’Reilly OSCON 2000, Advanced Python Programming, Slide 1
July 17, 2000, beazley@cs.uchicago.edu

Overview

Advanced Programming Topics in Python

A brief introduction to Python
Working with the filesystem.
Operating system interfaces
Programming with Threads
Network programming
Database interfaces
Restricted execution
Extensions in C.

This is primarily a tour of the Python library

Everything covered is part of the standard Python distribution.
Goal is to highlight many of Python’s capabilities.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 2
July 17, 2000, beazley@cs.uchicago.edu

Preliminaries

Audience

Experienced programmers who are familiar with advanced programming topics in other languages.
Python programmers who want to know more.
Programmers who aren’t afraid of gory details.

Disclaimer

This tutorial is aimed at an advanced audience
I assume prior knowledge of topics in Operating Systems and Networks.
Prior experience with Python won’t hurt as well.

My Background

I was drawn to Python as a C programmer.
Primary interest is using Python as an interpreted interface to C programs.
Wrote the "Python Essential Reference" in 1999 (New Riders Publishing).
All of the material presented here can be found in that source.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 3
July 17, 2000, beazley@cs.uchicago.edu

A Very Brief Tour of Python

O’Reilly OSCON 2000, Advanced Python Programming, Slide 4
July 17, 2000, beazley@cs.uchicago.edu

Starting and Stopping Python

Unix
 unix % python
 Python 1.5.2 (#1, Sep 19 1999, 16:29:25) [GCC 2.7.2.3] on linux2
 Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
 >>>

On Windows and Macintosh

Python is launched as an application.
An interpreter window will appear and you will see the prompt.

Program Termination

Programs run until EOF is reached.
Type Control-D or Control-Z at the interactive prompt.
Or type

 raise SystemExit

O’Reilly OSCON 2000, Advanced Python Programming, Slide 5
July 17, 2000, beazley@cs.uchicago.edu

Your First Program

Hello World
 >>> print "Hello World"
 Hello World
 >>>

Putting it in a file
 # hello.py
 print "Hello World"

Running a file
 unix % python hello.py

Or you can use the familiar #! trick
 #!/usr/local/bin/python
 print "Hello World"

O’Reilly OSCON 2000, Advanced Python Programming, Slide 6
July 17, 2000, beazley@cs.uchicago.edu

Variables and Expressions

Expressions

Standard mathematical operators work like other languages:

 3 + 5
 3 + (5*4)
 3 ** 2
 ’Hello’ + ’World’

Variable assignment
 a = 4 << 3
 b = a * 4.5
 c = (a+b)/2.5
 a = "Hello World"

Variables are dynamically typed (No explicit typing, types may change during execution).

Variables are just names for an object. Not tied to a memory location like in C.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 7
July 17, 2000, beazley@cs.uchicago.edu

Conditionals

if-else
 # Compute maximum (z) of a and b
 if a < b:
 z = b
 else:
 z = a

The pass statement
 if a < b:
 pass # Do nothing
 else:
 z = a

Notes:

Indentation used to denote bodies.
pass used to denote an empty body.
There is no ’?:’ operator.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 8
July 17, 2000, beazley@cs.uchicago.edu

Conditionals

elif statement
 if a == ’+’:
 op = PLUS
 elif a == ’-’:
 op = MINUS
 elif a == ’*’:
 op = MULTIPLY
 else:
 op = UNKNOWN

Note: There is no switch statement.

Boolean expressions: and, or, not
 if b >= a and b <= c:
 print "b is between a and c"
 if not (b < a or b > c):
 print "b is still between a and c"

O’Reilly OSCON 2000, Advanced Python Programming, Slide 9
July 17, 2000, beazley@cs.uchicago.edu

Basic Types (Numbers and Strings)

Numbers
 a = 3 # Integer
 b = 4.5 # Floating point
 c = 517288833333L # Long integer (arbitrary precision)
 d = 4 + 3j # Complex (imaginary) number

Strings
 a = ’Hello’ # Single quotes
 b = "World" # Double quotes
 c = "Bob said ’hey there.’" # A mix of both
 d = ’’’A triple quoted string
 can span multiple lines
 like this’’’
 e = """Also works for double quotes"""

O’Reilly OSCON 2000, Advanced Python Programming, Slide 10
July 17, 2000, beazley@cs.uchicago.edu

Basic Types (Lists)

Lists of Arbitrary Objects
 a = [2, 3, 4] # A list of integers
 b = [2, 7, 3.5, "Hello"] # A mixed list
 c = [] # An empty list
 d = [2, [a,b]] # A list containing a list
 e = a + b # Join two lists

List Manipulation
 x = a[1] # Get 2nd element (0 is first)
 y = b[1:3] # Return a sublist
 z = d[1][0][2] # Nested lists
 b[0] = 42 # Change an element

O’Reilly OSCON 2000, Advanced Python Programming, Slide 11
July 17, 2000, beazley@cs.uchicago.edu

Basic Types (Tuples)

Tuples
 f = (2,3,4,5) # A tuple of integers
 g = (,) # An empty tuple
 h = (2, [3,4], (10,11,12)) # A tuple containing mixed objects

Tuple Manipulation
 x = f[1] # Element access. x = 3
 y = f[1:3] # Slices. y = (3,4)
 z = h[1][1] # Nesting. z = 4

Comments

Tuples are like lists, but size is fixed at time of creation.
Can’t replace members (said to be "immutable")

O’Reilly OSCON 2000, Advanced Python Programming, Slide 12
July 17, 2000, beazley@cs.uchicago.edu

Basic Types (Dictionaries)

Dictionaries (Associative Arrays)
 a = { } # An empty dictionary
 b = { ’x’: 3, ’y’: 4 }
 c = { ’uid’: 105,
 ’login’: ’beazley’,
 ’name’ : ’David Beazley’
 }

Dictionary Access
 u = c[’uid’] # Get an element
 c[’shell’] = "/bin/sh" # Set an element
 if c.has_key("directory"): # Check for presence of an member
 d = c[’directory’]
 else:
 d = None

 d = c.get("directory",None) # Same thing, more compact

O’Reilly OSCON 2000, Advanced Python Programming, Slide 13
July 17, 2000, beazley@cs.uchicago.edu

Loops

The while statement
 while a < b:
 # Do something
 a = a + 1

The for statement (loops over members of a sequence)
 for i in [3, 4, 10, 25]:
 print i

 # Print characters one at a time
 for c in "Hello World":
 print c

 # Loop over a range of numbers
 for i in range(0,100):
 print i

O’Reilly OSCON 2000, Advanced Python Programming, Slide 14
July 17, 2000, beazley@cs.uchicago.edu

Functions

The def statement
 # Return the remainder of a/b
 def remainder(a,b):
 q = a/b
 r = a - q*b
 return r

 # Now use it
 a = remainder(42,5) # a = 2

Returning multiple values
 def divide(a,b):
 q = a/b
 r = a - q*b
 return q,r

 x,y = divide(42,5) # x = 8, y = 2

O’Reilly OSCON 2000, Advanced Python Programming, Slide 15
July 17, 2000, beazley@cs.uchicago.edu

Classes

The class statement
 class Account:
 def __init__(self, initial):
 self.balance = initial
 def deposit(self, amt):
 self.balance = self.balance + amt
 def withdraw(self,amt):
 self.balance = self.balance - amt
 def getbalance(self):
 return self.balance

Using a class
 a = Account(1000.00)
 a.deposit(550.23)
 a.deposit(100)
 a.withdraw(50)
 print a.getbalance()

O’Reilly OSCON 2000, Advanced Python Programming, Slide 16
July 17, 2000, beazley@cs.uchicago.edu

Exceptions

The try statement
 try:
 f = open("foo")
 except IOError:
 print "Couldn’t open ’foo’. Sorry."

The raise statement
 def factorial(n):
 if n < 0:
 raise ValueError,"Expected non-negative number"
 if (n <= 1): return 1
 else: return n*factorial(n-1)

Uncaught exception
 >>> factorial(-1)
 Traceback (innermost last):
 File "<stdin>", line 1, in ?
 File "<stdin>", line 3, in factorial
 ValueError: Expected non-negative number
 >>>

O’Reilly OSCON 2000, Advanced Python Programming, Slide 17
July 17, 2000, beazley@cs.uchicago.edu

Files

The open() function
 f = open("foo","w") # Open a file for writing
 g = open("bar","r") # Open a file for reading

Reading and writing data
 f.write("Hello World")
 data = g.read() # Read all data
 line = g.readline() # Read a single line
 lines = g.readlines() # Read data as a list of lines

Formatted I/O

Use the % operator for strings (works like C printf)

 for i in range(0,10):
 f.write("2 times %d = %d\n" % (i, 2*i))

O’Reilly OSCON 2000, Advanced Python Programming, Slide 18
July 17, 2000, beazley@cs.uchicago.edu

Modules

Large programs can be broken into modules
 # numbers.py
 def divide(a,b):
 q = a/b
 r = a - q*b
 return q,r

 def gcd(x,y):
 g = y
 while x > 0:
 g = x
 x = y % x
 y = g
 return g

The import statement
 import numbers
 x,y = numbers.divide(42,5)
 n = numbers.gcd(7291823, 5683)

import creates a namespace and executes a file.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 19
July 17, 2000, beazley@cs.uchicago.edu

Python Library

Python is packaged with a large library of standard modules

String processing
Operating system interfaces
Networking
Threads
GUI
Database
Language services
Security.

And there are many third party modules

XML
Numeric Processing
Plotting/Graphics
etc.

All of these are accessed using ’import’
 import string
 ...
 a = string.split(x)

O’Reilly OSCON 2000, Advanced Python Programming, Slide 20
July 17, 2000, beazley@cs.uchicago.edu

Quick Summary

This is not an introductory tutorial

Consult online docs or Learning Python for a gentle introduction.
Experiment with the interpreter.
Generally speaking, most programmers don’t have trouble picking up Python.

Rest of this tutorial

A fearless tour of various library modules.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 21
July 17, 2000, beazley@cs.uchicago.edu

String Processing

O’Reilly OSCON 2000, Advanced Python Programming, Slide 22
July 17, 2000, beazley@cs.uchicago.edu

The string module

Various string processing functions
 string.atof(s) # Convert to float
 string.atoi(s) # Convert to integer
 string.atol(s) # Convert to long
 string.count(s,pattern) # Count occurrences of pattern in s
 string.find(s,pattern) # Find pattern in s
 string.split(s, sep) # String a string
 string.join(strlist, sep) # Join a list of string
 string.replace(s,old,new) # Replace occurrences of old with new

Examples
 s = "Hello World"
 a = string.split(s) # a = [’Hello’,’World’]
 b = string.replace(s,"Hello","Goodbye")
 c = string.join(["foo","bar"],":") # c = "foo:bar"

O’Reilly OSCON 2000, Advanced Python Programming, Slide 23
July 17, 2000, beazley@cs.uchicago.edu

Regular Expressions

Background

Regular expressions are patterns that specify a matching rule.
Generally contain a mix of text and special characters

 foo.* # Matches any string starting with foo
 \d* # Match any number decimal digits
 [a-zA-Z]+ # Match a sequence of one or more letters

The re module

Provides regular expression pattern matching and replacement.
Details follow.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 24
July 17, 2000, beazley@cs.uchicago.edu

Regular Expressions

Regular expression pattern rules
 text Match literal text
 . Match any character except newline
 ^ Match the start of a string
 $ Match the end of a string
 * Match 0 or more repetitions
 + Match 1 or more repetitions
 ? Match 0 or 1 repetitions
 *? Match 0 or more, few as possible
 +? Match 1 or more, few as possible
 {m,n} Match m to n repetitions
 {m,n}? Match m to n repetitions, few as possible
 [...] Match a set of characters
 [^...] Match characters not in set
 A | B Match A or B
 (...) Match regex in parenthesis as a group

O’Reilly OSCON 2000, Advanced Python Programming, Slide 25
July 17, 2000, beazley@cs.uchicago.edu

Regular Expressions

Special characters
 \number Matches text matched by previous group
 \A Matches start of string
 \b Matches empty string at beginning or end of word
 \B Matches empty string not at begin or end of word
 \d Matches any decimal digit
 \D Matches any non-digit
 \s Matches any whitespace
 \S Matches any non-whitespace
 \w Matches any alphanumeric character
 \W Matches characters not in \w
 \Z Match at end of string.
 \\ Literal backslash

Raw strings

Because of backslashes and special characters, raw strings are used.
Raw strings don’t interpret backslash as an escape code

 expr = r’(\d+)\.(\d*)’ # Matches numbers like 3.4772

O’Reilly OSCON 2000, Advanced Python Programming, Slide 26
July 17, 2000, beazley@cs.uchicago.edu

The re Module

General idea

Regular expressions are specified using syntax described.
Compiled into a regular expression "object".
This is used to perform matching and replacement operations.

Example
 import re
 pat = r’(\d+)\.(\d*)’ # My pattern
 r = re.compile(pat) # Compile it
 m = r.match(s) # See if string s matches
 if m:
 # Yep, it matched
 ...
 else:
 # Nope.
 ...

O’Reilly OSCON 2000, Advanced Python Programming, Slide 27
July 17, 2000, beazley@cs.uchicago.edu

The re Module (cont)

Regular Expression Objects

Objects created by re.compile() have these methods

 r.search(s [,pos [,endpos]]) # Search for a match
 r.match(s [,pos [,endpos]]) # Check string for match
 r.split(s) # Split on a regex match
 r.findall(s) # Find all matches
 r.sub(repl,s) # Replace all matches with repl

When a match is found a ’MatchObject’ object is returned.
This contains information about where the match occurred.
Also contains group information.

Notes

The search method looks for a match anywhere in a string.
The match method looks for a match starting with the first character.
The pos and endpos parameters specify starting and ending positions for the search/match.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 28
July 17, 2000, beazley@cs.uchicago.edu

The re Module (cont)

Match Objects

Contain information about the match itself
But it is based on a notion of "groups"

Grouping Rules
 (\d+)\.(\d*)

This regular expression has 3 groups

 group 0 : The entire regular expression
 group 1 : The (\d+) part
 group 2 : The (\d*) part

Group numbers are assigned left to right in the pattern

Obtaining match information
 m.group(n) # Return text matched for group n
 m.start(n) # Return starting index for group n
 m.end(n) # Return ending index for group n

O’Reilly OSCON 2000, Advanced Python Programming, Slide 29
July 17, 2000, beazley@cs.uchicago.edu

The re Module (cont)

Matching Example
 import re

 r = re.compile(r’(\d+)\.(\d*)’)
 m = r.match("42.37")
 a = m.group(0) # Returns ’42.37’
 b = m.group(1) # Returns ’42’
 c = m.group(2) # Returns ’37’
 print m.start(2) # Prints 3

A more complex example
 # Replace URL such as http://www.python.org with a hyperlink
 pat = r’(http://[\w-]+(\.[\w-]+)*((/[\w-~]*)?))’
 r = re.compile(pat)
 r.sub(’\\1’,s) # Replace in string

Where to go from here?

Mastering Regular Expressions, by Jeffrey Friedl
Online docs
Experiment

O’Reilly OSCON 2000, Advanced Python Programming, Slide 30
July 17, 2000, beazley@cs.uchicago.edu

Working with Files

O’Reilly OSCON 2000, Advanced Python Programming, Slide 31
July 17, 2000, beazley@cs.uchicago.edu

File Objects

open(filename [,mode])

Opens a file and returns a file object
By default, opens a file for reading.
File open modes

 "r" Open for reading
 "w" Open for writing (truncating to zero length)
 "a" Open for append
 "r+" Open for read/write (updates)
 "w+" Open for read/write (with truncation to zero length)

Notes

A ’b’ may be appended to the mode to indicate binary data.
This is required for portability to Windows.
"+" modes allow random-access updates to the file.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 32
July 17, 2000, beazley@cs.uchicago.edu

File Objects

File Methods

The following methods can be applied to an open file f

 f.read([n]) # Read at most n bytes
 f.readline([n]) # Read a line of input with max length of n
 f.readlines() # Read all input and return a list of lines
 f.write(s) # Write string s
 f.writelines(ls) # Write a list of strings
 f.close() # Close a file
 f.tell() # Return current file pointer
 f.seek(offset [,where]) # Seek to a new position
 # where = 0: Relative to start
 # where = 1: Relative to current
 # where = 2: Relative to end
 f.isatty() # Return 1 if interactive terminal
 f.flush() # Flush output
 f.truncate([size]) # Truncate file to at most size bytes
 f.fileno() # Return integer file descriptor

O’Reilly OSCON 2000, Advanced Python Programming, Slide 33
July 17, 2000, beazley@cs.uchicago.edu

File Objects

File Attributes

The following attributes provide additional file information

 f.closed # Set to 1 if file object has been closed
 f.mode # I/O mode of the file
 f.name # Name of file if created using open().
 # Otherwise, a string indicating the source
 f.softspace # Boolean indicating if extra space needs to be
 # printed before another value when using print.

Other notes

File operations on lines are aware of local conventions (\n\r vs. \n).
String data read and written to files may contain embedded nulls and other binary content.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 34
July 17, 2000, beazley@cs.uchicago.edu

Standard Input, Output, and Error

Standard Files

sys.stdin - Standard input
sys.stdout - Standard output
sys.stderr - Standard error

These are used by several built-in functions

print outputs to sys.stdout
input() and raw_input() read from sys.stdin

 s = raw_input("type a command : ")
 print "You typed ", s

Error messages and the interactive prompts go to sys.stderr

You can replace these with other files if you want
 import sys
 sys.stdout = open("output","w")

O’Reilly OSCON 2000, Advanced Python Programming, Slide 35
July 17, 2000, beazley@cs.uchicago.edu

File and Path Manipulation

os.path - Functions for portable path manipulation
 abspath(path) # Returns the absolute pathname of a path
 basename(path) # Returns filename component of path
 dirname(path) # Returns directory component of path
 normcase(path) # Normalize capitalization of a name
 normpath(path) # Normalize a pathname
 split(path) # Split path into (directory, file)
 splitdrive(path) # Split path into (drive, pathname)
 splitext(path) # Split path into (filename, suffix)
 expanduser(path) # Expands ~user components
 expandvars(path) # Expands environment vars ’$name’ or ’${name}’
 join(p1,p2,...) # Join pathname components

Examples
 abspath("../foo") # Returns "/home/beazley/blah/foo"
 basename("/usr/bin/python") # Returns "python"
 dirname("/usr/bin/python") # Returns "/usr/bin"
 normpath("/usr/./bin/python") # Returns "/usr/bin/python"
 split("/usr/bin/python") # Returns ("/usr/bin","python")
 splitext("index.html") # Returns ("index",".html")

O’Reilly OSCON 2000, Advanced Python Programming, Slide 36
July 17, 2000, beazley@cs.uchicago.edu

File Tests

os.path - Functions for portable filename inquires
 exists(path) # Test for existence
 isabs(path) # Return 1 if path is an absolute pathname
 isfile(path) # Return 1 if path is a regular file
 isdir(path) # Return 1 if path is a directory
 islink(path) # Return 1 if path is a symlink
 ismount(path) # Return 1 if path is a mountpoint
 getatime(path) # Get access time
 getmtime(path) # Get modification time
 getsize(path) # Get file size in bytes
 samefile(path1,path2) # Return 1 if path1 and path2 are the same file
 sameopenfile(f1,f2) # Return 1 if file objects f1 and f2 are same file.

Notes:

samefile() and sameopenfile() useful if file referenced by symbolic links or aliases.
The stat module provides lower-level functions for file inquiry.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 37
July 17, 2000, beazley@cs.uchicago.edu

Globbing

glob module

Returns filenames in a directory that match a pattern

 import glob
 a = glob.glob("*.html")
 b = glob.glob("image[0-5]*.gif")

Pattern matching is performed using rules of Unix shell.
Tilde (~) and variable expansion is not performed.

fnmatch module

Matches filenames according to rules of Unix shell

 import fnmatch
 if fnmatch(filename,"*.html"):
 ...

Case-sensitivity depends on the operating system.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 38
July 17, 2000, beazley@cs.uchicago.edu

Low-Level File I/O

os.open(file [,flags [,mode]])

Opens a file and returns an integer file descriptor
flags is the bitwise-or of the following

 O_RDONLY Open file for reading
 O_WRONLY Open file for writing
 O_RDWR Open file for read/write
 O_APPEND Append to the end of the file
 O_CREAT Create file if it doesn’t exit
 O_NONBLOCK Don’t block on open,read, or write.
 O_TRUNC Truncate to zero length
 O_TEXT Text mode (Windows)
 O_BINARY Binary mode (Windows)

mode is file access mode according to standard Unix conventions

Example
 import os
 f = os.open("foo", O_WRONLY | O_CREAT, 0644)

O’Reilly OSCON 2000, Advanced Python Programming, Slide 39
July 17, 2000, beazley@cs.uchicago.edu

Low-Level I/O operations

The os module contains a variety of low-level I/O functions

 os.close(fd) # Close a file
 os.dup(fd) # Duplicate file descriptor fd
 os.dup2(oldfd,newfd) # Duplicate oldfd to newfd
 os.fdopen(fd [,mode [,bufsize]]) # Create a file object from an fd
 os.fstat(fd) # Return file status for fd
 os.fstatvfs(fd) # Return file system info for fd
 os.ftruncate(fd,size) # Truncate file to given size
 os.lseek(fd,pos,how) # Seek to new position
 # how = 0: beginning of file
 # how = 1: current position
 # how = 2: end of file

 os.read(fd,n) # Read at most n bytes
 os.write(fd,str) # Write data in str

Notes

The os.fdopen() and f.fileno() methods convert between file objects and file descriptors.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 40
July 17, 2000, beazley@cs.uchicago.edu

Low-level File and Directory Manipulation

The os module also contains functions manipulating files and directories

 os.access(path,accessmode) # Checks access permissions on a file
 os.chmod(path,mode) # Change file permissions
 os.chown(path,uid,gid) # Change owner and group permissions
 os.link(src,dst) # Create a hard link
 os.listdir(path) # Return a list of names in a directory
 os.mkdir(path [,mode]) # Create a directory
 os.remove(path) # Remove a file
 os.rename(src,dst) # Rename a file
 os.rmdir(path) # Remove a directory
 os.stat(path) # Return file information
 os.statvfs(path) # Return filesystem information
 os.symlink(src,dst) # Create a symbolic link
 os.unlink(path) # Remove a file (same as remove)
 os.utime(path,(atime,mtime)) # Change access and modification times

Notes

If you care about portability, better to use the os.path module for some of these operations.
Note all operations have been listed. Consult a reference.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 41
July 17, 2000, beazley@cs.uchicago.edu

Other File-Related Modules

fcntl

Provides access to the fcntl() system call and file-locking operations

 import fcntl, FCNTL
 # Lock a file
 fcntl.flock(f.fileno(),FCNTL.LOCK_EX)

tempfile

Creates temporary files

gzip

Creates file objects with compression/decompression
Compatible with the GNU gzip program.

 import gzip
 f = gzip.open("foo","wb")
 f.write(data)
 f.close()

O’Reilly OSCON 2000, Advanced Python Programming, Slide 42
July 17, 2000, beazley@cs.uchicago.edu

Strings and Files

The StringIO and cStringIO modules

Provide a file-like object that reads/writes from a string buffer
Example:

 import StringIO
 f = StringIO.StringIO()
 f.write("Hello World\n")
 ...
 s = f.getvalue() # Get saved string value

Notes

StringIO objects support most of the normal file operations
cStringIO is implemented in C and is significantly faster.
StringIO is implemented in Python and can be subclassed.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 43
July 17, 2000, beazley@cs.uchicago.edu

Object Serialization and Persistence

O’Reilly OSCON 2000, Advanced Python Programming, Slide 44
July 17, 2000, beazley@cs.uchicago.edu

Object Serialization

Motivation

Sometimes you need to save an object to disk and restore it later.
Or maybe you need to ship it across the network.

Problem

Manual implementation requires a lot of work.
Must come up with some kind of encoding scheme.
Must write code to marshal objects to and from the encoding.

Fortunately...

Python provides several modules to do all of this for you

O’Reilly OSCON 2000, Advanced Python Programming, Slide 45
July 17, 2000, beazley@cs.uchicago.edu

The pickle and cPickle Module

The pickle and cPickle modules serialize objects to and from files

To serialize, you ’pickle’ an object

 import pickle
 p = pickle.Pickler(file) # file is an open file object
 p.dump(obj) # Dump object

To unserialize, you ’unpickle’ an object

 p = pickle.Unpickler(file) # file is an open file
 obj = p.load() # Load object

Notes

Most built-in types can be pickled except for files, sockets, execution frames, etc...
The data-encoding is Python-specific.
Any file-like object that provides write(),read(), and readline() methods can be used as a file.
Recursive objects are correctly handled.
cPickle is like pickle, but written in C and is substantially faster.
pickle can be subclassed, cPickle can not.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 46
July 17, 2000, beazley@cs.uchicago.edu

The marshal Module

The marshal module can also be used for serialization

To serialize

 import marshal
 marshal.dump(obj,file) # Write obj to file

To unserialize

 obj = marshal.load(file)

Notes

marshal is similiar to pickle, but is intended only for simple objects
Can’t handle recursion or class instances.
On the plus side, it’s pretty fast if you just want to save simple objects to a file.
Data is stored in a binary architecture independent format

O’Reilly OSCON 2000, Advanced Python Programming, Slide 47
July 17, 2000, beazley@cs.uchicago.edu

The shelve Module

The shelve module provides a persistent dictionary

Idea: works like a dictionary, but data is stored on disk

 import shelve
 d = shelve.open("data") # Open a ’shelf’
 d[’foo’] = 42 # Save data
 x = d[’bar’] # Retrieve data

Shelf operations

 d[key] = obj # Store an object
 obj = d[key] # Retrieve an object
 del d[key] # Delete an object
 d.has_key(key) # Test for existence of key
 d.keys() # Return a list of all keys
 d.close() # Close the shelf

Comments

Keys must be strings.
Data can be any object serializable with pickle.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 48
July 17, 2000, beazley@cs.uchicago.edu

DBM-Style Databases

Python provides a number of DBM-style database interfaces

Key-based databases that store arbitrary strings.
Similar to shelve, but can’t store arbitrary objects (strings only)
Examples: dbm, gdbm, bsddb

Example:
 import dbm
 d = dbm.open("database","r")
 d["foo"] = "bar" # Store a value
 s = d["spam"] # Retrieve a value
 del d["name"] # Delete a value
 d.close() # Close the database

Comments

The availability of DBM modules depends on optional libraries and may vary.
Don’t use these if you should really be using a relational database (e.g., MySQL).

O’Reilly OSCON 2000, Advanced Python Programming, Slide 49
July 17, 2000, beazley@cs.uchicago.edu

Operating System Services

O’Reilly OSCON 2000, Advanced Python Programming, Slide 50
July 17, 2000, beazley@cs.uchicago.edu

Operating System Services

Python provides a wide variety of operating system interfaces

Basic system calls
Operating environment
Processes
Timers
Signal handling
Error reporting
Users and passwords

Implementation

A large portion of this functionality is contained in the os module.
The interface is based on POSIX.
Not all functions are available on all platforms (especially Windows/Mac).

Let’s take a tour...

I’m not going to cover everything.
This is mostly a survey of what Python provides.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 51
July 17, 2000, beazley@cs.uchicago.edu

Process Environment

Environment Variables

os.environ - A dictionary containing current environment variables

 user = os.environ[’USER’]
 os.environ[’PATH’] = "/bin:/usr/bin"

Current directory and umask
 os.chdir(path) # Change current working directory
 os.getcwd() # Get current working directory
 os.umask(mask) # Change umask setting. Returns previous umask

User and group identification
 os.getegid() # Get effective group id
 os.geteuid() # Get effective user id
 os.getgid() # Get group id
 os.getuid() # Get user id
 os.setgid(gid) # Set group id
 os.setuid(uid) # Set user id

O’Reilly OSCON 2000, Advanced Python Programming, Slide 52
July 17, 2000, beazley@cs.uchicago.edu

Process Creation and Destruction

fork-exec-wait
 os.fork() # Create a child process.
 os.execv(path,args) # Execute a process
 os.execve(path, args, env)
 os.execvp(path, args) # Execute process, use default path
 os.execvpe(path,args, env)
 os.wait([pid)] # Wait for child process
 os.waitpid(pid,options) # Wait for change in state of child
 os.system(command) # Execute a system command
 os._exit(n) # Exit immediately with status n.

Canonical Example
 import os
 pid = os.fork() # Create child
 if pid == 0:
 # Child process
 os.execvp("ls", ["ls","-l"])
 else:
 os.wait() # Wait for child

O’Reilly OSCON 2000, Advanced Python Programming, Slide 53
July 17, 2000, beazley@cs.uchicago.edu

Pipes

os.popen() function
 f = popen("ls -l", "r")
 data = f.read()
 f.close()

Opens a pipe to or from a command and returns a file-object.

The popen2 module

Spawns processes and provides hooks to stdin, stdout, and stderr

 popen2(cmd) # Run cmd and return (stdout, stdin)
 popen3(cmd) # Run cmd and return (stdout, stdin, stderr)

Example

 (o,i) = popen2.popen2("wc")
 i.write(data) # Write to child’s input
 i.close()
 result = o.read() # Get child’s output
 o.close()

O’Reilly OSCON 2000, Advanced Python Programming, Slide 54
July 17, 2000, beazley@cs.uchicago.edu

The commands Module

The easy way to capture the output of a subprocess
 import commands
 data = commands.getoutput("ls -l")

Also includes a quoting function

 arg = mkarg(str) # Turns str into a argument suitable
 # for use in the shell (to prevent mischief)

Comments

Really this is just a wrapper over the popen2 module.
Only available on Unix (sorry).

O’Reilly OSCON 2000, Advanced Python Programming, Slide 55
July 17, 2000, beazley@cs.uchicago.edu

Error Handling

System-related errors are typically translated into the following

OSError - General operating system error
IOError - I/O related system error

Cause of the error is contained in errno attribute of exception

Can use the errno module for symbolic error names

Example:
 import os, errno
 ...
 try:
 os.execlp("foo")
 except OSError,e:
 if e.errno == errno.ENOENT:
 print "Program not found. Sorry"
 elif e.errno == errno.ENOEXEC:
 print "Program not executable."
 else:
 # Some other kind of error

O’Reilly OSCON 2000, Advanced Python Programming, Slide 56
July 17, 2000, beazley@cs.uchicago.edu

Signal Handling

Signals

Usually correspond to external events and arrive asynchronously.
Example: Expiration of a timer, arrival of input, program fault.

The signal module

Provides functions for writing Unix-style signal handlers in Python.

 signal.signal(signalnum, handler) # Set a signal handler
 signal.alarm(time) # Schedules a SIGALRM signal
 signal.pause() # Go to sleep until signal
 signal.getsignal(signalnum) # Get signal handler

Supported signals (platform specific)
 SIGABRT SIGFPE SIGKILL SIGSEGV SIGTTOU
 SIGALRM SIGHUP SIGPIPE SIGSTOP SIGURG
 SIGBUS SIGILL SIGPOLL SIGTERM SIGUSR1
 SIGCHLD SIGINT SIGPROF SIGTRAP SIGUSR2
 SIGCLD SIGIO SIGPWR SIGTSTP SIGVTALRM
 SIGCONT SIGIOT SIGQUIT SIGTTIN SIGWINCH
 SIGXCPU SIGXFSZ

O’Reilly OSCON 2000, Advanced Python Programming, Slide 57
July 17, 2000, beazley@cs.uchicago.edu

Signal Handling (Cont)

Example: A Periodic Timer
 import signal
 interval = 1.0
 ticks = 0
 def alarm_handler(signo,frame):
 global ticks
 print "Alarm ", ticks
 ticks = ticks + 1
 signal.alarm(interval) # Schedule a new alarm

 signal.signal(signal.SIGALRM, alarm_handler)
 signal.alarm(interval)
 # Spin forever--should see handler being called every second
 while 1:
 pass

O’Reilly OSCON 2000, Advanced Python Programming, Slide 58
July 17, 2000, beazley@cs.uchicago.edu

Signal Handling (Cont)

Ignoring signals
 signal.signal(signo, signal.SIG_IGN)

Default behavior
 signal.signal(signo, signal.SIG_DFL)

Comments

Signal handlers remain installed until explicitly reset.
It is not possible to temporarily disable signals.
Signals are only handled between atomic instructions of the interpreter.
If a signal occurs during an I/O operation, it may fail with an exception (errno == EINTR).
Certain signals can’t be handled from Python (SIGSEGV for instance).
Python handles a number of signals on its own (SIGINT, SIGTERM).
Mixing signals and threads is extremely problematic. Only main thread can deal with signals.
Signal handling on Windows and Macintosh is of limited functionality.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 59
July 17, 2000, beazley@cs.uchicago.edu

Time

The time module

A variety of time related functions

 time.clock() # Current CPU time in seconds
 time.time() # Current time (GMT) in seconds since epoch
 time.localtime(secs) # Convert time to local time (returns a tuple).
 time.gmtime(secs) # Convert time to GMT (returns a tuple)
 time.asctime(tuple) # Creates a string representing the time
 time.ctime(secs) # Create a string representing local time
 time.mktime(tuple) # Convert time tuple to seconds
 time.sleep(secs) # Go to sleep for awhile

Example
 import time
 t = time.time()
 # Returns (year,month,day,hour,minute,second,weekday,day,dst)
 tp = time.localtime(t)
 # Produces a string like ’Mon Jul 12 14:45:23 1999’
 print time.localtime(tp)

O’Reilly OSCON 2000, Advanced Python Programming, Slide 60
July 17, 2000, beazley@cs.uchicago.edu

Getting User and Group Information

The pwd module

Provides access to the Unix password database

 pwd.getpwuid(uid) # Returns passwd entry for uid
 pwd.getpwname(login) # Returns passwd entry for login
 pwd.getpwall() # Get all entries

 x = pwd.getpwnam(’beazley’)
 # x = (’beazley’,’x’,100,1,’David M. Beazley’, ’/home/beazley’,
 # ’/usr/bin/csh’)

The grp module

Provides access to Unix group database

 grp.getgrgid(gid) # Return group entry for gid
 grp.getgrnam(gname) # Return group entry for gname
 grp.getgrall() # Get all entries

O’Reilly OSCON 2000, Advanced Python Programming, Slide 61
July 17, 2000, beazley@cs.uchicago.edu

Other Miscellaneous Services

crypt

Provides access to the Unix crypt() function.
Used to encrypt passwords

locale

Support for the POSIX locale functions.

resource

Allows a program to control and monitor its system resources
Can place limits on CPU time, file sizes, etc.

termios

Low-level terminal I/O handling.
For all of those vintage TTY fans.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 62
July 17, 2000, beazley@cs.uchicago.edu

Windows and Macintosh

Comment

Most of Python’s OS interfaces are Unix-centric.
However, much of this functionality is emulated on non-Unix platforms.
With a number of omissions (especially in process and user management).

The msvcrt module

Provides access to a number of functions in the Microsoft Visual C++ runtime.
Functions to read and write characters.
Some additional file handling (locking, modes, etc...).
But not a substitute for PythonWin.

The macfs, macostools, and findertools modules

Manipulation of files and applications on the Macintosh.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 63
July 17, 2000, beazley@cs.uchicago.edu

Threads

O’Reilly OSCON 2000, Advanced Python Programming, Slide 64
July 17, 2000, beazley@cs.uchicago.edu

Thread Basics

Background

A running program is called a "process"
Each process has memory, list of open files, stack, program counter, etc...
Normally, a process executes statements in a single sequence of control-flow.

Process creation with fork(),system(), popen(), etc...

These commands create an entirely new process.
Child process runs independently of the parent.
Has own set of resources.
There is minimal sharing of information between parent and child.
Think about using the Unix shell.

Threads

A thread is kind of like a process (it’s a sequence of control-flow).
Except that it exists entirely inside a process and shares resources.
A single process may have multiple threads of execution.
Useful when an application wants to perform many concurrent tasks on shared data.
Think about a browser (loading pages, animations, etc.)

O’Reilly OSCON 2000, Advanced Python Programming, Slide 65
July 17, 2000, beazley@cs.uchicago.edu

Problems with Threads

Scheduling

To execute a threaded program, must rapidly switch between threads.
This can be done by the user process (user-level threads).
Can be done by the kernel (kernel-level threads).

Resource Sharing

Since threads share memory and other resources, must be very careful.
Operation performed in one thread could cause problems in another.

Synchronization

Threads often need to coordinate actions.
Can get "race conditions" (outcome dependent on order of thread execution)
Often need to use locking primitives (mutual exclusion locks, semaphores, etc...)

O’Reilly OSCON 2000, Advanced Python Programming, Slide 66
July 17, 2000, beazley@cs.uchicago.edu

Python Threads

Python supports threads on the following platforms

Solaris
Windows
Systems that support the POSIX threads library (pthreads)

Thread scheduling

Tightly controlled by a global interpreter lock and scheduler.
Only a single thread is allowed to be executing in the Python interpreter at once.
Thread switching only occurs between the execution of individual byte-codes.
Long-running calculations in C/C++ can block execution of all other threads.
However, most I/O operations do not block.

Comments

Python threads are somewhat more restrictive than in C.
Effectiveness may be limited on multiple CPUs (due to interpreter lock).
Threads can interact strangely with other Python modules (especially signal handling).
Not all extension modules are thread-safe.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 67
July 17, 2000, beazley@cs.uchicago.edu

The thread module

The thread module provides low-level access to threads

Thread creation.
Simple mutex locks.

Creating a new thread

thread.start_new_thread(func,[args [,kwargs]])
Executes a function in a new thread.

 import thread
 import time
 def print_time(delay):
 while 1:
 time.sleep(delay)
 print time.ctime(time.time())

 # Start the thread
 thread.start_new_thread(print_time,(5,))
 # Go do something else
 statements
 ...

O’Reilly OSCON 2000, Advanced Python Programming, Slide 68
July 17, 2000, beazley@cs.uchicago.edu

The thread module (cont)

Thread termination

Thread silently exits when the function returns.
Thread can explicitly exit by calling thread.exit() or sys.exit().
Uncaught exception causes thread termination (and prints error message).
However, other threads continue to run even if one had an error.

Simple locks

allocate_lock(). Creates a lock object, initially unlocked.

 import thread
 lk = thread.allocate_lock()
 def foo():
 lk.acquire() # Acquire the lock
 critical section
 lk.release() # Release the lock

Only one thread can acquire the lock at once.
Threads block indefinitely until lock becomes available.
You might use this if two or more threads were allowed to update a shared data structure.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 69
July 17, 2000, beazley@cs.uchicago.edu

The thread module (cont)

The main thread

When Python starts, it runs as a single thread of execution.
This is called the "main thread."
On its own, it’s no big deal.
However, if you launch other threads it has some special properties.

Termination of the main thread

If the main thread exits and other threads are active, the behavior is system dependent.
Usually, this immediately terminates the execution of all other threads without cleanup.
Cleanup actions of the main thread may be limited as well.

Signal handling

Signals can only be caught and handled by the main thread of execution.
Otherwise you will get an error (in the signal module).
Caveat: The keyboard-interrupt can be caught by any thread (non-deterministically).

O’Reilly OSCON 2000, Advanced Python Programming, Slide 70
July 17, 2000, beazley@cs.uchicago.edu

The threading module

The threading module is a high-level threads module

Implements threads as classes (similar to Java)
Provides an assortment of synchronization and locking primitives.
Built using the low-level thread module.

Creating a new thread (as a class)

Idea: Inherit from the "Thread" class and provide a few methods

 import threading, time
 class PrintTime(threading.Thread):
 def __init__(self,interval):
 threading.Thread.__init__(self) # Required
 self.interval = interval
 def run(self):
 while 1:
 time.sleep(self.interval)
 print time.ctime(time.time())

 t = PrintTime(5) # Create a thread object
 t.start() # Start it
 ...

O’Reilly OSCON 2000, Advanced Python Programming, Slide 71
July 17, 2000, beazley@cs.uchicago.edu

The threading module (cont)

The Thread class

When defining threads as classes all you need to supply is the following:
A constructor that calls threading.Thread.__init__(self)
A run() method that performs the actual work of the thread.

A few additional methods are also available

 t.join([timeout]) # Wait for thread t to terminate
 t.getName() # Get the name of the thread
 t.setName(name) # Set the name of the thread
 t.isAlive() # Return 1 if thread is alive.
 t.isDaemon() # Return daemonic flag
 t.setDaemon(val) # Set daemonic flag

Daemon threads

Normally, interpreter exits only when all threads have terminated.
However, a thread can be flagged as a daemon thread (runs in background).
Interpreter really only exits when all non-daemonic threads exit.
Can use this to launch threads that run forever, but which can be safely killed.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 72
July 17, 2000, beazley@cs.uchicago.edu

The threading module (cont)

The threading module provides the following synchronization primitives

Mutual exclusion locks
Reentrant locks
Conditional variables
Semaphores
Events

Why would you need these?

Threads are updating shared data structures
Threads need to coordinate their actions in some manner (events).
You need to regain some programming sanity.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 73
July 17, 2000, beazley@cs.uchicago.edu

Lock Objects

The Lock object

Provides a simple mutual exclusion lock

 import threading
 data = [] # Some data
 lck = threading.Lock() # Create a lock

 def put_obj(obj):
 lck.acquire()
 data.append(obj)
 lck.release()

 def get_obj():
 lck.acquire()
 r = data.pop()
 lck.release()
 return r

Only one thread is allowed to acquire the lock at once
Most useful for coordinating access to shared data.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 74
July 17, 2000, beazley@cs.uchicago.edu

RLock Objects

The RLock object

A mutual-exclusion lock that allows repeated acquisition by the same thread
Allows nested acquire(), release() operations in the thread that owns the lock.
Only the outermost release() operation actually releases the lock.

 import threading
 data = [] # Some data
 lck = threading.Lock() # Create a lock

 def put_obj(obj):
 lck.acquire()
 data.append(obj)
 ...
 put_obj(otherobj) # Some kind of recursion
 ...
 lck.release()

 def get_obj():
 lck.acquire()
 r = data.pop()
 lck.release()
 return r

O’Reilly OSCON 2000, Advanced Python Programming, Slide 75
July 17, 2000, beazley@cs.uchicago.edu

Condition Variables

The Condition object

Creates a condition variable.
Synchronization primitive typically used when a thread is interested in an event or state change.
Classic problem: producer-consumer problem.

 # Create data queue and a condition variable
 data = []
 cv = threading.Condition()
 # Consumer thread
 def consume_item():
 cv.acquire() # Acquire the lock
 while not len(data):
 cv.wait() # Wait for data to show up
 r = data.pop()
 cv.release() # Release the lock
 return r
 # Producer thread
 def produce_item(obj):
 cv.acquire() # Acquire the lock
 data.append(obj)
 cv.notify() # Notify a consumer
 cv.release() # Release the lock

O’Reilly OSCON 2000, Advanced Python Programming, Slide 76
July 17, 2000, beazley@cs.uchicago.edu

Semaphore Objects

Semaphores

A locking primitive based on a counter.
Each acquire() method decrements the counter.
Each release() method increments the counter.
If the counter reaches zero, future acquire() methods block.
Common use: limiting the number of threads allowed to execute code

 sem = threading.Semaphore(5) # No more than 5 threads allowed
 def fetch_file(host,filename):
 sem.acquire() # Decrements count or blocks if zero
 ...
 blah
 ...
 sem.release() # Increment count

O’Reilly OSCON 2000, Advanced Python Programming, Slide 77
July 17, 2000, beazley@cs.uchicago.edu

Event Objects

Events

A communication primitive for coordinating threads.
One thread signals an "event"
Other threads wait for it to happen.

 # Create an event object
 e = Event()

 # Signal the event
 def signal_event():
 e.set()

 # Wait for event
 def wait_for_event():
 e.wait()

 # Clear event
 def clear_event():
 e.clear()

Similar to a condition variable, but all threads waiting for event are awakened.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 78
July 17, 2000, beazley@cs.uchicago.edu

Locks and Blocking

By default, all locking primitives block until lock is acquired

In general, this is uninterruptible.

Fortunately, most primitives provide a non-blocking option

 if not lck.acquire(0):
 # lock couldn’t be acquired!

This works for Lock, RLock, and Semaphore objects

Timeouts

Condition variables and events provide a timeout option

 cv = Condition()
 ...
 cv.wait(60.0) # Wait 60 seconds for notification

On timeout, the function simply returns. Up to caller to detect errors.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 79
July 17, 2000, beazley@cs.uchicago.edu

The Queue Module

Provides a multi-producer, multi-consumer FIFO queue object

Can be used to safely exchange data between multiple threads

 q = Queue(maxsize) # Create a queue
 q.qsize() # Return current size
 q.empty() # Test if empty
 q.full() # Test if full
 q.put(item) # Put an item on the queue
 q.get() # Get item from queue

Notes:

The Queue object also supports non-blocking put/get.

 q.put_nowait(item)
 q.get_nowait()

These raise the Queue.Full or Queue.Empty exceptions if an error occurs.
Return values for qsize(), empty(), and full() are approximate.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 80
July 17, 2000, beazley@cs.uchicago.edu

Final Comments on Threads

Python threads are quite functional

Can write applications that use dozens (or even hundreds) of threads

But there are performance issues

Global interpreter lock makes it difficult to fully utilize multiple CPUs.
You don’t get the degree of parallelism you might expect.

Interaction with C extensions

Common problem: I wrote a big C extension and it broke threading.
The culprit: Not releasing global lock before starting a long-running function.

Not all modules are thread-friendly

Example: gethostbyname() blocks all threads if nameserver down.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 81
July 17, 2000, beazley@cs.uchicago.edu

Network Programming

O’Reilly OSCON 2000, Advanced Python Programming, Slide 82
July 17, 2000, beazley@cs.uchicago.edu

Network Overview

Python provides a wide assortment of network support

Low-level programming with sockets (if you want to create a protocol).
Support for existing network protocols (HTTP, FTP, SMTP, etc...)
Web programming (CGI scripting and HTTP servers)
Data encoding

I can only cover some of this

Programming with sockets
HTTP and Web related modules.
A few data encoding modules

Recommended Reference

Unix Network Programming by W. Richard Stevens.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 83
July 17, 2000, beazley@cs.uchicago.edu

Network Basics: TCP/IP

Python’s networking modules primarily support TCP/IP

TCP - A reliable connection-oriented protocol (streams).
UDP - An unreliable packet-oriented protocol (datagrams).
Of these, TCP is the most common (HTTP, FTP, SMTP, etc...).

Both protocols are supported using "sockets"

A socket is a file-like object.
Allows data to be sent and received across the network like a file.
But it also includes functions to accept and establish connections.
Before two machines can establish a connection, both must create a socket object.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 84
July 17, 2000, beazley@cs.uchicago.edu

Network Basics: Ports

Ports

In order to receive a connection, a socket must be bound to a port (by the server).
A port is a number in the range 0-65535 that’s managed by the OS.
Used to identify a particular network service (or listener).
Ports 0-1023 are reserved by the system and used for common protocols

 FTP Port 20
 Telnet Port 23
 SMTP (Mail) Port 25
 HTTP (WWW) Port 80

Ports above 1024 are reserved for user processes.

Socket programming in a nutshell

Server creates a socket, binds it to some well-known port number, and starts listening.
Client creates a socket and tries to connect it to the server (through the above port).
Server-client exchange some data.
Close the connection (of course the server continues to listen for more clients).

O’Reilly OSCON 2000, Advanced Python Programming, Slide 85
July 17, 2000, beazley@cs.uchicago.edu

Socket Programming Example

The socket module

Provides access to low-level network programming functions.
Example: A server that returns the current time

 # Time server program
 from socket import *
 import time

 s = socket(AF_INET, SOCK_STREAM) # Create TCP socket
 s.bind(("",8888)) # Bind to port 8888
 s.listen(5) # Start listening

 while 1:
 client,addr = s.accept() # Wait for a connection
 print "Got a connection from ", addr
 client.send(time.ctime(time.time())) # Send time back
 client.close()

Notes:

Socket first opened by server is not the same one used to exchange data.
Instead, the accept() function returns a new socket for this (’client’ above).
listen() specifies max number of pending connections.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 86
July 17, 2000, beazley@cs.uchicago.edu

Socket Programming Example (cont)

Client Program

Connect to time server and get current time

 # Time client program
 from socket import *
 s = socket(AF_INET,SOCK_STREAM) # Create TCP socket
 s.connect(("makemepoor.com",8888)) # Connect to server
 tm = s.recv(1024) # Receive up to 1024 bytes
 s.close() # Close connection
 print "The time is", tm

Key Points

Once connection is established, server/client communicate using send() and recv().
Aside from connection process, it’s relatively straightforward.
Of course, the devil is in the details.
And are there ever a LOT of details.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 87
July 17, 2000, beazley@cs.uchicago.edu

The socket Module

This is used for all low-level networking

Creation and manipulation of sockets
General purpose network functions (hostnames, data conversion, etc...)
A direct translation of the BSD socket interface.

Utility Functions
 socket.gethostbyname(hostname) # Get IP address for a host
 socket.gethostname() # Name of local machine
 socket.ntohl(x) # Convert 32-bit integer to host order
 socket.ntohs(x) # Convert 16-bit integer to host order
 socket.htonl(x) # Convert 32-bit integer to network order
 socket.htons(x) # Convert 16-bit integer to network order

Comments

Network order for integers is big-endian.
Host order may be little-endian or big-endian (depends on the machine).

O’Reilly OSCON 2000, Advanced Python Programming, Slide 88
July 17, 2000, beazley@cs.uchicago.edu

The socket Module (cont)

The socket(family, type, proto) function

Creates a new socket object.
family is usually set to AF_INET
type is one of:

 SOCK_STREAM Stream socket (TCP)
 SOCK_DGRAM Datagram socket (UDP)
 SOCK_RAW Raw socket

proto is usually only used with raw sockets

 IPPROTO_ICMP
 IPPROTO_IP
 IPPROTO_RAW
 IPPROTO_TCP
 IPPROTO_UDP

Comments

Currently no support for IPv6 (although its on the way).
Raw sockets only available to processes running as root.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 89
July 17, 2000, beazley@cs.uchicago.edu

The socket Module (cont)

socket methods
 s.accept() # Accept a new connection
 s.bind(address) # Bind to an address and port
 s.close() # Close the socket
 s.connect(address) # Connect to remote socket
 s.fileno() # Return integer file descriptor
 s.getpeername() # Get name of remote machine
 s.getsockname() # Get socket address as (ipaddr,port)
 s.getsockopt(...) # Get socket options
 s.listen(backlog) # Start listening for connections
 s.makefile(mode) # Turn socket into a file object
 s.recv(bufsize) # Receive data
 s.recvfrom(bufsize) # Receive data (UDP)
 s.send(string) # Send data
 s.sendto(string, address) # Send packet (UDP)
 s.setblocking(flag) # Set blocking or nonblocking mode
 s.setsockopt(...) # Set socket options
 s.shutdown(how) # Shutdown one or both halves of connection

Comments

There are a huge variety of configuration/connection options.
You’ll definitely want a good reference at your side.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 90
July 17, 2000, beazley@cs.uchicago.edu

The SocketServer Module

Provides a high-level class-based interface to sockets

Encapsulates each protocol in a class (TCPServer, UDPServer, etc.)
Provides a series of handler classes that specify additional server behavior.
To create a network service, need to inherit from both a protocol and handler class.

Example
 # Simple time server
 import SocketServer
 import time
 # This class actually implements the server functionality
 class TimeHandler(SocketServer.BaseRequestHandler):
 def handle(self):
 self.request.send(time.ctime(time.time()))

 # Create the server
 server = SocketServer.TCPServer(("",8888),TimeHandler)
 server.serve_forever()

Comments

The module provides a number of specialized server and handler types.
Ex: ForkingTCPServer, ThreadingTCPServer, StreamRequestHandler, etc.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 91
July 17, 2000, beazley@cs.uchicago.edu

Common Network Protocols

Modules are available for a variety of network protocols

ftplib - FTP protocol
smtplib - SMTP (mail) protocol
nntplib - News
gopherlib - Gopher
poplib - POP3 mail server
imaplib - IMAP4 mail server
telnetlib - Telnet protocol
httplib - HTTP protocol

Comments

These modules are built using sockets, but operate on a very low-level.
Require a good understand of the underlying protocol.
But can be quite powerful if you know exactly what you are doing.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 92
July 17, 2000, beazley@cs.uchicago.edu

The httplib Module

Implements the HTTP 1.0 protocol

Can use to talk to a web server.

HTTP in two bullets

Client (e.g., a browser) sends a request to the server

 GET /index.html HTTP/1.0
 Connection: Keep-Alive
 Host: www.python.org
 User-Agent: Mozilla/4.61 [en] (X11; U; SunOS 5.6 sun4u)
 [blank line]

Server responds with something like this:

 HTTP/1.0 200 OK
 Content-type: text/html
 Content-length: 72883
 Headers: blah
 [blank line]
 Data
 ...

O’Reilly OSCON 2000, Advanced Python Programming, Slide 93
July 17, 2000, beazley@cs.uchicago.edu

The httplib Module (cont)

Making an HTTP connection
 import httplib
 h = httplib.HTTP("www.python.org")
 h.putrequest(’GET’,’/index.html’)
 h.putheader(’User-Agent’,’Lame Tutorial Code’)
 h.putheader(’Accept’,’text/html’)
 h.endheaders()
 errcode,errmsg, headers = h.getreply()
 f = h.getfile() # Get file object for reading data
 data = f.read()
 f.close()

Comments

Some understanding of HTTP is required.
Only HTTP/1.0 is currently supported.
Most of the other protocol modules work in a similar manner.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 94
July 17, 2000, beazley@cs.uchicago.edu

The urllib Module

A high-level interface to HTTP and FTP

Provides a file-like object that can be used to connect to remote servers

 import urllib
 f = urllib.urlopen("http://www.python.org/index.html")
 data = f.read()
 f.close()

Utility functions
 urllib.quote(str) # Quotes a string for use in a URL
 urllib.quote_plus(str) # Also replaces spaces with ’+’
 urllib.unquote(str) # Opposite of quote()
 urllib.unquote_plus(str) # Opposite of quote_plus()
 urllib.urlencode(dict) # Turns a dictionary of key=value
 # pairs into a HTTP query-string

Examples

 urllib.quote("beazley@cs") # Produces "beazley%40cs"
 urllib.unquote("%23%21/bin/sh") # Produces "/bin/sh"

O’Reilly OSCON 2000, Advanced Python Programming, Slide 95
July 17, 2000, beazley@cs.uchicago.edu

The urlparse Module

Functions for manipulating URLs

URL’s have the following general format

 scheme:/netloc/path;parameters?query#fragment

urlparse(urlstring) - Parses a URL into components

 import urlparse
 t = urlparse.urlparse("http://www.python.org/index.html")
 # Produces (’http’,’www.python.org’,’/index.html’,’’,’’,’’)

urlunparse(tuple) - Turns tuple of components back into a URL string

 url = urlparse.urlunparse((’http’,’www.python.org’,’foo.html’,
 ’bar=spam’,’’))
 # Produces "http://www.python.org/foo.html?bar=spam"

urljoin(base, url) - Combines a base and relative URL

 urlparse.urljoin("http://www.python.org/index.html","help.html")
 # Produces "http://www.python.org/help.html"

O’Reilly OSCON 2000, Advanced Python Programming, Slide 96
July 17, 2000, beazley@cs.uchicago.edu

CGI Scripting

CGI Overview

Common protocol web servers use to run external programs in response to HTTP requests.
Typical uses: forms processing, dynamic content generation

How it works

You write some sort of form in your HTML document

 <form method="GET" action="cgi-bin/spam.cgi">
 Your name: <input type="text" name="name" size=30><p>
 Your email: <input type="text" name="email" size=40><p>
 <input type="submit" value="Submit"></form>

This gets translated into request with parameters

 GET /cgi-bin/spam.cgi?name=Dave+Beazley&email=beazley%40cs HTTP/1.0

Web-server (e.g., Apache) launches CGI program and passes parameters
That program writes to stdout to produce the web-page.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 97
July 17, 2000, beazley@cs.uchicago.edu

CGI Scripting

CGI Example
 #!/usr/local/bin/python
 print "Content-type: text/html\n"
 print "<h1>Hello World</h1>

Problem

To do anything useful, have to receive and decode "query string" from server
Which is tedious

The cgi module

Provides a variety of functions for writing CGI programs.
Reading data.
Decoding query strings
Getting header information.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 98
July 17, 2000, beazley@cs.uchicago.edu

cgi Module Example

Example of using CGI module
 #!/usr/local/bin/python
 import cgi
 form = cgi.FieldStorage() # Read query string
 name = form["name"].value # Get ’name’ field from form
 email = form["email"].value # Get ’email’ field from form

 print "Content-type: text/html"
 print
 print "<H1>Hello %s. Your email is %s</h1>" % (name,email)

Comments

There is much more to this module than presented here.
Plus a number of security implications.
However, there are now better ways to do this sort of thing (PHP3, Zope, etc...)

O’Reilly OSCON 2000, Advanced Python Programming, Slide 99
July 17, 2000, beazley@cs.uchicago.edu

Miscellaneous Network Topics

Modules not discussed

select - Access to the select() system call. Useful for polling.
asyncore - A framework for writing highly threaded servers based on asynchronous I/O.
BaseHTTPServer, SimpleHTTPServer, CGIHTTPServer - Framework for building web-servers.

A few related extensions

Fnorb - A CORBA implementation for Python.
ILU - Distributed Objects.

A small plug

Python is a great language for experimenting with network programming.
Can experiment interactively at the prompt.
Programs are relatively simple.
Compare to low-level network programming in C.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 100
July 17, 2000, beazley@cs.uchicago.edu

Data Encoding

O’Reilly OSCON 2000, Advanced Python Programming, Slide 101
July 17, 2000, beazley@cs.uchicago.edu

Data Encoding

Problem

Data is managed in a variety of formats.
Especially in Internet applications and network protocols

Examples

Base64 encoding
Quoted-printable encoding
Uuencoding
MIME
HTML
XML
Binhex
Binary data structures
XDR

Fortunately, Python has a variety of data processing modules

O’Reilly OSCON 2000, Advanced Python Programming, Slide 102
July 17, 2000, beazley@cs.uchicago.edu

Base64 Encoding

The base64 module

Encodes and decodes base64 encoded text
Commonly used to embed binary data in mail attachments

Encoding
 import base64
 base64.encode(inputfile,outputfile) # Files
 es = base64.encodestring(s) # Strings

Decoding
 import base64
 base64.decode(inputfile, outputfile) # Files
 s = base64.decodestring(es) # String

O’Reilly OSCON 2000, Advanced Python Programming, Slide 103
July 17, 2000, beazley@cs.uchicago.edu

Uuencoding

The uu module

Encodes and decodes uuencoded text
Same idea as before

Encoding
 import uu
 uu.encode(inputfile,outputfile)

Decoding
 import uu
 uu.decode(inputfile,outputfile)

O’Reilly OSCON 2000, Advanced Python Programming, Slide 104
July 17, 2000, beazley@cs.uchicago.edu

Quoted-Printed Encoding

The quopri module

Encodes and decodes text in "quoted-printable" format
Commonly used to encode text-documents in mail messages
Yep, same general idea

Encoding
 import quopri
 quopri.encode(inputfile,outputfile)

Decoding
 import quopri
 quopri.decode(inputfile,outputfile)

O’Reilly OSCON 2000, Advanced Python Programming, Slide 105
July 17, 2000, beazley@cs.uchicago.edu

Binhex4 Encoding

The binhex module

Encodes and decodes text in binhex format.
Commonly used to encode binary files on the Macintosh.

Encoding
 import binhex
 binhex.binhex(inputfile,outputfile)

Decoding
 import binhex
 binhex.hexbin(inputfile,outputfile)

Note

Macintosh resource fork ignored on non-mac systems.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 106
July 17, 2000, beazley@cs.uchicago.edu

RFC822 Headers

The rfc822 module

Used to parse RFC-822 encoded headers.
Used in e-mail and HTTP protocol.

 Return-Path:
 Date: Sat, 17 Jul 1999 10:18:21 -500 (CDT)
 Reply-To: beazley@cs.uchicago.edu
 Context-Type: text/plain; charset=US-ASCII
 From: David Beazley
 To: guido@cnri.reston.va.us
 Subject: IPC8

 Blah...

General idea:

Headers are parsed into a special Message object.
Can query for individual fields

O’Reilly OSCON 2000, Advanced Python Programming, Slide 107
July 17, 2000, beazley@cs.uchicago.edu

RFC822 (cont)

rfc822 Example
 import rfc822
 f = open("mailmessage")
 m = rfc822.Message(f)
 # Extract some fields
 m_from = m["From"]
 m_to = m.getaddr("To")
 m_subject = m["Subject"]

Selected Message operations
 m[name] # Return data for header name
 m[name] = value # Add a header
 m.keys() # Return a list of all header names
 m.values() # Return list of header values
 m.items() # Return list of (header,value) pairs
 m.has_key(name) # Test for existence
 m.getallmatchingheaders(name) # Return list of all matching headers
 m.getaddr(name) # Return (full_name, email) for an address field
 m.getaddrlist(name) # Get a list of email addresses
 m.getdate(name) # Get a date as a time tuple

O’Reilly OSCON 2000, Advanced Python Programming, Slide 108
July 17, 2000, beazley@cs.uchicago.edu

Binary Data Encoding

The struct module

Allows binary structures to be packed into a string
Useful if you need to interact with a binary network protocol
Or if you need to create a binary data structure for a C program.

Packing data with pack(fmt, v1, v2, ...)

Packs the values v1, v2, and so on according to a format string
Format codes and corresponding C datatypes

 ’x’ Pad byte ’I’ unsigned int
 ’c’ char ’l’ long
 ’b’ signed char ’L’ unsigned long
 ’B’ unsigned char ’f’ float
 ’h’ short ’d’ double
 ’H’ unsigned short ’s’ char[]
 ’i’ int ’P’ void *

Example

 s = struct.pack("hhii", 34, 73, 162773, 2222)
 s = struct.pack("is", len(t), t)

O’Reilly OSCON 2000, Advanced Python Programming, Slide 109
July 17, 2000, beazley@cs.uchicago.edu

Binary Data Encoding (cont)

Unpacking data with unpack(fmt, string)

Same idea in reverse.
Returns a tuple of unpacked values

 t = struct.unpack("hhii",s)
 a,b,c,d = struct.unpack("hhii",s)

Data alignment and bit ordering

First character of format string can specify encoding rules

 ’@’ Native byte order Native size and alignment
 ’=’ Native byte order Standard size and alignment
 ’<’ Little endian Standard size and alignment
 ’>’ Big endian Standard size and alignment
 ’!’ Network order Standard size and alignment

Native alignment uses the size and alignment rules of the C compiler.
Standard alignment uses no padding and assumes the following sizes

 short 2 bytes int 4 bytes
 long 4 bytes float 32 bits
 double 64 bits

O’Reilly OSCON 2000, Advanced Python Programming, Slide 110
July 17, 2000, beazley@cs.uchicago.edu

Other Encoding Modules

xdrlib

Encodes strings to and from Sun XDR format.
Commonly used in Remote Procedure Call (RPC)

MIME

The MimeWriter, multifile, mimetypes, and mimetools modules
Decoding and encoding of MIME encoded mail messages.
Basically RFC822 plus some additional encoding rules.

htmllib

Parsing of HTML documents

sgmllib and xmllib

Parsing of SGML and XML documents
Caveat: deprecated. Consult the XML-sig for more up to date work.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 111
July 17, 2000, beazley@cs.uchicago.edu

Restricted Execution

O’Reilly OSCON 2000, Advanced Python Programming, Slide 112
July 17, 2000, beazley@cs.uchicago.edu

Restricted Execution

Problem

Sometimes want to run code in a restricted environment
CGI scripts
Agents
Applets

Python solution

rexec module - Restricted code execution
Bastion - Restricted access to objects

O’Reilly OSCON 2000, Advanced Python Programming, Slide 113
July 17, 2000, beazley@cs.uchicago.edu

The rexec Module

Provides a restricted environment for code execution

Defines a class RExec that provides a controlled execution environment
Class attributes:

 RExec.nok_builtin_names # List of prohibited built-in functions
 RExec.ok_builtin_modules # List of modules that can be imported
 RExec.ok_path # List of directories searched on import
 RExec.ok_posix_names # List of accepted functions in os module
 RExec.ok_sys_names # List of members in sys module

Methods on an instance of RExec

 r.r_eval(code) # Evaluate code in restricted mode
 r.r_exec(code) # Execute code in restricted mode
 r.r_execfile(filename) # Execute file in restricted more

A few methods which may be redefined

 r.r_import(modulename) # Called whenever code imports
 r.r_open(filename,mode) # Called whenever code opens a file

O’Reilly OSCON 2000, Advanced Python Programming, Slide 114
July 17, 2000, beazley@cs.uchicago.edu

The rexec Module (cont)

Example
 # Create a little restricted environment
 import rexec
 class AppletExec(rexec.RExec):
 ok_builtin_modules = [’string’,’math’,’time’]
 ok_posix_names = []
 def r_open(*args):
 # Check filename for special cases
 ...
 raise SystemError, "Go away"

 r = AppletExec()
 r.r_exec(appletcode)

Additional comments regarding restricted mode

The interpreter runs in restricted mode if the identity of __builtins__ has been changed.
Restricted programs can’t access the __dict__ attribute of classes and instances.
Similar restrictions are placed on other objects to prevent a code from becoming priviledged.

O’Reilly OSCON 2000, Advanced Python Programming, Slide 115
July 17, 2000, beazley@cs.uchicago.edu

The Bastion Module

Problem

Sometimes a restricted program needs to access an object created in unrestricted mode

Solution

A Bastion
Basically just a "wrapper" that’s placed around the object.
Intercepts all attribute access with a filter function and either allows or prohibits access.

Example
 import Bastion, StringIO
 s = StringIO("") # Create a file like object
 sbast = Bastion.Bastion(s,lambda x: x in [’read’,’readline’])
 sbast.readline() # Okay
 sbast.write("Blah") # Fails. Attribute error.

Note

Can’t place Bastions around built-in types like files and sockets

O’Reilly OSCON 2000, Advanced Python Programming, Slide 116
July 17, 2000, beazley@cs.uchicago.edu

C Extensions

O’Reilly OSCON 2000, Advanced Python Programming, Slide 117
July 17, 2000, beazley@cs.uchicago.edu

The Final Frontier

Python has a lot of stuff, but sometimes you need more

Access to special purpose libraries and applications
You have a favorite system call.
You need serious performance

Extension Building

Python interpreter can be extended with functions written C
This is how many of the built-in modules work.

General Idea

You write a C extension (using special Python API)
Compile the extension into dynamic link library (DLL)
Dynamically load the extension using ’import’

O’Reilly OSCON 2000, Advanced Python Programming, Slide 118
July 17, 2000, beazley@cs.uchicago.edu

Example

Suppose you wanted to add the following C function
 /* Compute the greatest common divisor */
 int gcd(int x, int y) {
 int g;
 g = y;
 while (x > 0) {
 g = x;
 y = y % x;
 y = g;
 }
 return g;
 }

O’Reilly OSCON 2000, Advanced Python Programming, Slide 119
July 17, 2000, beazley@cs.uchicago.edu

Example (cont)

First step: write Python "wrapper"
 #include "Python.h"

 extern int gcd(int, int);
 /* Wrapper for gcd */
 static PyObject *
 py_gcd(PyObject *self, PyObject *args) {
 int x,y,g;
 /* Get arguments */
 if (!PyArg_ParseTuple(args,"ii",&x,&y)) {
 return NULL;
 }
 /* Call the C function */
 g = gcd(x,y);
 /* Return result */
 return Py_BuildValue("i",g);
 }

O’Reilly OSCON 2000, Advanced Python Programming, Slide 120
July 17, 2000, beazley@cs.uchicago.edu

Example (cont)

Step two: package into a module
 /* Module ’spam’
 #include "Python.h"
 extern int gcd(int, int);

 /* Wrapper for gcd */
 static PyObject *
 py_gcd(PyObject *self, PyObject *args) {
 ... blah ...
 }

 /* Method table */
 static PyMethodDef spammethods[] = {
 {"gcd", py_gcd, METH_VARARGS},
 { NULL, NULL}
 };

 /* Module initialization */
 void initspam() {
 Py_InitModule("spam",spammethods);
 }

O’Reilly OSCON 2000, Advanced Python Programming, Slide 121
July 17, 2000, beazley@cs.uchicago.edu

Example (cont)

Step three: Compile into a module

Create a file called "Setup" like this

 shared
 spam gcd.c spammodule.c

Copy the file Makefile.pre.in from the Python directory.

 % cp /usr/local/lib/python1.5/config/Makefile.pre.in .

Type the following

 % make -f Makefile.pre.in boot
 % make

This will (hopefully) create a shared object file with the module

O’Reilly OSCON 2000, Advanced Python Programming, Slide 122
July 17, 2000, beazley@cs.uchicago.edu

Example (cont)

Step four: Use your module
 linux % python
 Python 1.5.2 (#1, Jul 11, 1999 13:56:44) [C] on linux
 Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
 >>> import spam
 >>> spam.gcd(63,56)
 7
 >>> spam.gcd(71,89)
 1
 >>>

It’s almost too easy...

O’Reilly OSCON 2000, Advanced Python Programming, Slide 123
July 17, 2000, beazley@cs.uchicago.edu

Extension Building

Comments

Extension building is a complex topic.
Differences between platforms extremely problematic.
Large C libraries can be a challenge.
Complex C++ libraries can be an even greater challenge.
I have only given a small taste (it’s an entirely different tutorial)

Resources

Extension building API documentation (www.python.org)
The CXX extension (cxx.sourceforge.net)
SWIG (swig.sourceforge.net)

O’Reilly OSCON 2000, Advanced Python Programming, Slide 124
July 17, 2000, beazley@cs.uchicago.edu

Conclusions

O’Reilly OSCON 2000, Advanced Python Programming, Slide 125
July 17, 2000, beazley@cs.uchicago.edu

Final Comments

This has been a whirlwind tour

Everything covered is part of the standard Python distribution.
However, there are well over 150 standard modules in the standard library.
And we only looked at a small subset.

Experiment!

Python is a great language for experimentation.
Fire up the interpreter and start typing commands.
This is a great way to learn about the various modules

For more information:

Python Essential Reference (shameless plug)
Online documentation (www.python.org)

Acknowledgments

Guido van Rossum
David Ascher
Paul Dubois

O’Reilly OSCON 2000, Advanced Python Programming, Slide 126
July 17, 2000, beazley@cs.uchicago.edu

